
Context-Free Grammars 

Grammars and Regular Grammars 

For natural languages, each has its own grammar. A Chinese 

sentence follows Chinese language grammar. An English 

sentence follows its own grammar. 

A sentence may follow a correct grammar without proper 

meaning. For instance, the following sentence is 

grammatically correct but nonsense: 

A desk eats a lion. 



For programming languages, Pascal programs must follow the 

Pascal programming grammar. A C program has to obey the C 

programming grammar. 

Even numbers must also follow their rules to be written down.  

The rules can be as follows. 

An integer can be either nonnegative number or negative number. 

A number consists of one digit or many digits. 

For a one digit number, it could be 0, 1, …, 9. 

For a many digits number, it starts with a digit of 1, …, 9, 

and follows with many digits of 0, 1, …, 9. 

Using the following graph structure could be easier to understand 

the above rules. 



The following structure consists of rewriting rule, sequence, 

selection and repetition properties. 

(2) Sequence : That B follows A is shown as 

A B 

(3) Selection : That select one item from A, B and C  is shown as 

A 

B 

C 

(4) Repetition : Repeat to select item A for 0, 1, or many times. 

A 

(1) Rewriting rule : Left part A is replaced by the right part B. 

A B :: = 



The structure of integers can be written as follows. 

<single> 

<many> 

<nonzero> <single> 

<single> :: = 

0 

1 

9 


 

<nonzero> ::= 

1 

2 

9 


 

<negative> 

<nonnegative> 

<nonnegative> – 

<integer> ::= 

< negative > ::= 

<nonnegative> ::= 

<many> ::= 



The structure of integers can also be written in Backus-Naur form 

shown as follows.  The notation  stands for rewriting and the 

symbol | stands for selection. Repetition is replaced by recursion. 

<nonzero> 1 2 3 4 5 6 7 8 9 

< negative > <nonnegative> – 

<single> <nonnegative> <nonzero> <number> 

<single> 1 2 3 4 5 6 7 8 9 0 

<negative> <integer> <nonnegative> 

<single> <number> <number> <single> 



The symbols used in Backus-Naur form are variables and terminals.  

To generate a string of terminals 123, we start from the variable 

<integer> and follow the above rules as follows. 

<integer> <nonnegative> 

<nonzero> <number> 

1 <number> 

1 <single> <number> 

1 2  <number> 

1 2  <single>  

1 2  3  

The notation  

stands for derivation. 

The notation  

stands for many 

derivations. 

* 

<integer>  * 1 2 3 

The set of variables is {<integer>, <nonnegative>, <negative>, 

<nonzero>, <single>, <number>} 

The set of terminals is {–, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. 

We have that 



Regular Grammars 

A regular language can be accepted by a finite state automaton 

and denoted by a regular expression. 

In this section, we shall show that a regular language can be 

generated by a regular grammar. 

Definition 1: A regular grammar G = (V, T, P, S) is defined as 

follows. 

(1) V is a finite set of variable. S is the start symbol in V. 

(2) T is a finite set of terminals, and T V = . 

(3) P is a finite set of productions or rewriting rules. 

Each production is of the form:  

A  aB, where A, B  V and a  T, or 

A  a, where A  V and a  T. 



Definition 2: The set generated by a regular grammar G = (V, T, P, 

S) is {  T* | S * } denoted by L(G). 

Example 2: Find L(G) for G = (V, T, P, S), where V = {S, A, B}, 

T = {0, 1} and P contains the following productions: 

S  0A | 1B | 1 

A  0S | 1B | 1 

B  0B | 1A | 0 

Solution: 

The set generated by a regular grammar G is 

{  {0, 1}* |  has odd number of 1’s}. 

See also example 3 and example 2 of section 2.5 for the result.   



Theorem 1: Let L be a regular language. Then there is a regular 

grammar G such that L(G) = L. 

Proof: 

L is regular, there exists a DFA M = (Q, , , q 0, F) accepting L. 

Construct a regular grammar G = (V, T, P, S) by the following. 

Assume that Q   = .  Let V = Q, S = q 0, T = . 

If (q, a) = p and p  F, then P contains a production as   

q  a p, where a T, p, q V.  

If (q, a) = p and p F, then P contains a production as   

q  a p | a 

It is easy to show that *(q, ) = p  F, iff S * . 



Theorem 2: Let G be a regular grammar G. Then L(G) is regular. 

Proof: 

Let G = (V, T, P, S) be a regular grammar.  

Construct an NFA M = (Q, , , q 0, F) as follows. 

Assume that q f  V.  Let Q = V{q f}, q 0 = S,  = T and F={q f}. 

If q  a p is a production in P, then  

(q, a) = p, where a  , p, q  Q. 

If q  a is a production in P, then   

(q, a) = q f 

It is easy to show that *(q, ) = q f  F, iff S * . 



Example 3: Find a DFA M such that L(M) = L(G) for a regular 

grammar G = (V, T, P, S), where V = {S, A, B}, T = {0, 1} and P 

contains the following productions: 

S  0A | 1B | 1 A  0S | 1B | 1 B  0B | 1A | 0 

Solution: 

By theorem 2, construct an NFA M 1 to accept L(G) and modify 

to a DFA M as follows.  

q f M 1 

S 

0 
B 

1 
A 

1 0 

1 

0 1 
1 

0 

S 

0 
B 

1 
A 

1 0 

1 

0 
M 



By the previous theorems and theorems in chapter 2, we have the 

following theorem. 

Theorem 3: The class of regular languages, the class of DFA’s, the 

class of regular expressions and the class of regular grammars are 

equivalent. 

Note : 

(1) A DFA can recognize a regular set. 

(2) A regular expression can represent a regular set. 

(3) A regular grammar can generate a regular set. 


